Ферменты расщепляющие белки при пищеварении секретируются

О пищеварительных ферментах, их видах и функциях

Ферменты расщепляющие белки при пищеварении секретируются

Пищеварительные ферменты – это вещества белковой природы, которые вырабатываются в желудочно-кишечном тракте. Они обеспечивают процесс переваривания пищи и стимулируют ее усвоение.

Функции ферментов

Основной функцией пищеварительных ферментов является разложение сложных веществ на более простые, которые легко усваиваются в кишечнике человека.

Действие белковых молекул направлено на следующие группы веществ:

  • белки и пептиды;
  • олиго- и полисахариды;
  • жиры, липиды;
  • нуклеотиды.

Виды ферментов

  1. Пепсин. Фермент представляет собой вещество, которое вырабатывается в желудке. Он воздействует на белковые молекулы в составе пищи, разлагая их на элементарные составляющие – аминокислоты.
  2. Трипсин и химотрипсин.

    Эти вещества входят в группу панкреатических ферментов, которые вырабатываются поджелудочной железой и доставляются в двенадцатиперстный кишечник. Здесь они также воздействуют на белковые молекулы.

  3. Амилаза. Фермент относится к веществам, разлагающим сахара (углеводы). Амилаза вырабатывается в ротовой полости и в тонком кишечнике.

    Она разлагает один из главных полисахаридов – крахмал. В результате получается небольшой углевод – мальтоза.

  4. Мальтаза. Фермент также воздействует на углеводы. Его специфическим субстратом является мальтоза. Она разлагается на 2 молекулы глюкозы, которые всасываются стенкой кишечника.
  5. Сахараза.

    Белок воздействует на другой распространенный дисахарид – сахарозу, которая содержится в любой высокоуглеводной пище. Углевод распадается на фруктозу и глюкозу, легко усваивающиеся организмом.

  6. Лактаза. Специфический фермент, который воздействует на углевод из молока – лактозу.

    При ее разложении получаются другие продукты – глюкоза и галактоза.

  7. Нуклеазы. Ферменты из данной группы воздействуют на нуклеиновые кислоты – ДНК и РНК, которые содержатся в пище. После их воздействия вещества распадаются на отдельные составляющие – нуклеотиды.
  8. Нуклеотидазы.

    Вторая группа ферментов, которая воздействует на нуклеиновые кислоты, называется нуклеотидазами. Они разлагают нуклеотиды с получением более мелких составляющих – нуклеозидов.

  9. Карбоксипептидаза. Фермент воздействует на небольшие белковые молекулы – пептиды. В результате такого процесса получаются отдельные аминокислоты.

  10. Липаза. Вещество разлагает жиры и липиды, поступающие в пищеварительную систему. При этом образуются их составные части – спирт, глицерин и жирные кислоты.

Читайте по теме: Сколько времени переваривается пища в желудке человека?

Недостаток пищеварительных ферментов

Недостаточная выработка пищеварительных ферментов – это серьезная проблема, которая требует врачебного вмешательства. При небольшом количестве эндогенных энзимов пища не сможет нормально перевариваться в кишечнике человека.

Если вещества не перевариваются, то они не могут всасываться в кишечнике. Пищеварительная система способна усвоить только небольшие фрагменты органических молекул. Большие компоненты, которые входят в состав еды, не смогут принести пользу человеку. Вследствие этого в организме может развиться недостаточность тех или иных веществ.

Нехватка углеводов или жиров приведет к тому, что организм лишится «топлива» для активной деятельности. Недостаточность белков лишает тело человека строительного материала, которым являются аминокислоты. Кроме того, нарушение пищеварения приводит к изменению характера кала, которое может неблагоприятно влиять на характер кишечной перистальтики.

Причины

  • воспалительные процессы в кишечнике и желудке;
  • нарушения характера питания (переедание, недостаточная термическая обработка);
  • болезни обмена веществ;
  • панкреатит и другие болезни поджелудочной железы;
  • поражение печени и желчных путей;
  • врожденные патологии ферментной системы;
  • послеоперационные последствия (недостаточность энзимов из-за удаления части пищеварительной системы);
  • лекарственные воздействия на желудок и кишечник;
  • беременность;
  • дисбактериоз.

Симптомы

  • тяжесть или боль в животе;
  • метеоризм, вздутие;
  • тошнота и рвота;
  • ощущение бурления в животе;
  • диарея, изменение характера стула;
  • изжога;
  • отрыжка.

Длительное сохранение недостаточности пищеварения сопровождается появлением общих симптомов, связанных с пониженным поступлением питательных веществ в организм.

В данную группу входят следующие клинические проявления:

  • общая слабость;
  • снижение работоспособности;
  • головные боли;
  • нарушения сна;
  • повышенная раздражительность;
  • в тяжелых случаях – симптомы анемии из-за недостаточного усвоения железа.

Избыток пищеварительных ферментов

Избыток пищеварительных ферментов наиболее часто наблюдается при таком заболевании, как панкреатит. Состояние связано с гиперпродукцией этих веществ клетками поджелудочной железы и нарушением их выведения в кишечник. В связи с этим развивается активное воспаление в ткани органа, вызванное воздействием ферментов.

Признаками панкреатита могут быть:

  • сильные боли в области живота;
  • тошнота;
  • вздутие;
  • нарушение характера стула.

Часто развивается общее ухудшение состояния больного. Появляется общая слабость, раздражительность, снижается масса тела, нарушается нормальный сон.

Как выявить нарушения в синтезе пищеварительных ферментов?

  1. Исследование кала. Обнаружение непереваренных остатков пищи в кале свидетельствует о нарушении активности ферментативной системы кишечника. В зависимости от характера изменений можно предположить, недостаточность какого фермента имеется.
  2. Биохимический анализ крови.

    Исследование позволяет оценить состояние метаболизма пациента, которое напрямую зависит от активности пищеварения.

  3. Исследование желудочного сока. Методика позволяет оценить содержание ферментов в полости желудка, что свидетельствует об активности пищеварения.

  4. Исследование ферментов поджелудочной железы. Анализ дает возможность детально изучить количество секрета органа, благодаря чему можно установить причину нарушений.
  5. Генетическое исследование. Некоторые ферментопатии могут иметь наследственный характер.

    Их диагностируют с помощью анализа ДНК человека, в которой обнаруживаются соответствующие тому или иному заболеванию гены.

Основные принципы терапии ферментных нарушений

Изменение выработки пищеварительных ферментов является поводом для обращения к врачу. После проведения комплексного обследования доктор определит причину возникновения нарушений и назначит соответствующее лечение. Самостоятельно бороться с патологией не рекомендуется.

Важным компонентом лечения является правильное питание. Больному назначается соответствующая диета, которая направлена на облегчение переваривания пищи. Необходимо избегать переедания, так как это провоцирует кишечные расстройства. Пациентам назначается лекарственная терапия, в том числе и заместительное лечение ферментативными препаратами.

Конкретные средства и их дозировки подбираются врачом.

Источник: https://ProKishechnik.info/anatomiya/funkcii/pishhevaritelnye-fermenty.html

Ферменты расщепляющие белки при пищеварении секретируются

Ферменты расщепляющие белки при пищеварении секретируются

Пищеварение – цепь важнейших процессов, происходящих в нашем организме, благодаря которой органы и ткани получают необходимые питательные вещества. Заметьте, никаким другим способом в организм не могут поступить ценные белки, жиры, углеводы, минералы и витамины.

Пища поступает в ротовую полость, проходит пищевод, попадает в желудок, оттуда отправляется в тонкий, затем в толстый кишечник. Это схематичное описание того, как проходит пищеварение. На самом деле всё гораздо сложнее. Пища проходит определённую обработку в том или ином отделе желудочно-кишечного тракта.

Каждый этап – отдельный процесс.

Нужно сказать, что огромную роль в пищеварении играют ферменты, которые сопровождают пищевой комок на всех этапах. Ферменты представлены в нескольких видах: ферменты, отвечающие за переработку жиров; ферменты, отвечающие за переработку белков и, соответственно, углеводов.

Что же представляют собой эти вещества? Ферменты (энзимы) являются белковыми молекулами, ускоряющими химические реакции. Их наличие/отсутствие определяет скорость и качество обменных процессов.

Многим людям для нормализации метаболизма приходится принимать препараты, содержащие ферменты, так как их пищеварительная система не справляется с поступаемой пищей.

Ферменты для углеводов

Пищеварительный процесс, ориентированный на углеводы, начинается ещё в ротовой полости. Пища измельчается с помощью зубов, параллельно подвергаясь воздействию слюны. В слюне и кроется секрет в виде фермента птиалина, который превращает крахмал в декстрин, а после в дисахарид мальтозу.

Мальтозу же расщепляет фермент мальтаза, разбивая её на 2 молекулы глюкозы. Итак, первый этап ферментативной обработки пищевого комка пройден. Расщепление крахмалистых соединений, начавшееся во рту, продолжается в желудочном пространстве.

Пища, поступив в желудок, испытывает на себе действие соляной кислоты, которая блокирует ферменты слюны. Завершающая стадия расщепления углеводов проходит внутри кишечника с участием высокоактивных ферментных веществ.

Эти вещества (мальтаза, лактаза, инвертаза), перерабатывающие моносахариды и дисахариды, содержатся в секреторной жидкости поджелудочной железы.

Ферменты для белков

Расщепление белков проходит в 3 этапа. Первый этап осуществляется в желудке, второй – в тонком кишечнике, а третий – в полости толстого кишечника (этим занимаются клетки слизистой оболочки).

В желудке и тонком кишечнике под действием ферментов протеазов полипептидные белковые цепи распадаются на более короткие олигопептидные, которые после попадают в клеточные образования слизистой оболочки толстого кишечника.

С помощью пептидазов олигопептиды расщепляются до конечных белковых элементов – аминокислот.

Слизистая желудка вырабатывает неактивный фермент пепсиноген. В катализатор он превращается лишь под влиянием кислой среды, становясь пепсином. Именно пепсин нарушает целостность белков.

В кишечнике на белковую пищу воздействуют ферментные вещества поджелудочной железы (трипсин, а также химотрипсин), переваривая длинные белковые цепи в нейтральной среде.

Олигопептиды подвергаются расщеплению до аминокислот с участием некоторых пептидазовых элементов.

Ферменты для жиров

Жиры, как и другие пищевые элементы, перевариваются в желудочно-кишечном тракте в несколько этапов. Начинается этот процесс в желудке, в котором липазы расщепляют жиры на жирные кислоты и глицерин.

Составляющие жиров отправляются в двенадцатиперстную кишку, где смешиваются с желчью и соком поджелудочной железы.

Желчные соли подвергают жиры эмульгации, чтобы ускорить их обработку ферментом панкреатического сока липазой.

Путь расщеплённых белков, жиров, углеводов

Как уже выяснилось, под действием ферментов белки, жиры и углеводы распадаются на отдельные составляющие. Жирные кислоты, аминокислоты, моносахариды попадают в кровь посредством эпителия тонкого кишечника, а «отходы» отправляются в полость толстого кишечника. Здесь всё, что не смогло перевариться, становится объектом внимания микроорганизмов.

Они перерабатывают эти вещества собственными ферментами, образуя шлаки и токсины. Опасным для организма является попадание продуктов распада в кровь. Гнилостную микрофлору кишечника можно подавить кисломолочными бактериями, содержащимися в кисломолочных продуктах: твороге, кефире, сметане, ряженке, простокваше, йогурте, кумысе. Вот почему рекомендуется ежедневное их употребление.

Однако перебарщивать с кисломолочными продуктами нельзя.

Все непереваренные элементы составляют каловые массы, которые накапливаются в сигмовидном отрезке кишечника. А покидают они толстый кишечник через прямую кишку.

Полезные микроэлементы, образовавшиеся в ходе расщепления белков, жиров и углеводов, всасываются в кровь. Их назначение – участие в большом числе химических реакций, обусловливающих протекание метаболизма (обмена веществ).

Важную функцию выполняет печень: она осуществляет конвертацию аминокислот, жирных кислот, глицерина, молочной кислоты в глюкозу, таким образом обеспечивая организм энергией.

Также печень представляет собой своеобразный фильтр, очищающий кровь от токсинов, ядов.

Источник: http://gastris.ru/gastrit/fermenty-rasshhepljajushhie-belki-pri.html

Ферменты: что есть и от чего отказаться, чтобы заставить их работать

Ферменты расщепляющие белки при пищеварении секретируются

От ферментов зависит наша биологическая жизнь, без них не работала бы наша пищевая цепочка, сообщает Sputnik Беларусь.

Почему ферменты так важны для нас?

В нашем организме с рождения заложено определенное количество ферментов. Их у нас более 3 тысяч видов.

Без ферментов невозможно ни пищеварение, ни дыхание, без них ни единого раза не сократится сердце, не будут работать мыслительные процессы в головном мозге.

Ферменты участвуют в беременности и родах, уменьшают воспалительные процессы, улучшают иммунную систему, а также участвуют в синтезе ДНК и внутриклеточном пищеварении.

Мы состоим из клеток, жизнь кипит в каждой из них 24 часа в сутки благодаря ферментам. Можно уверенно сказать, что управление жизнью — это ферментативная реакция.

Ферменты — это белковые структуры, состоящие из цепочек аминокислот. Они участвуют в расщеплении необходимого и в разрушении ненужного.

Каждый фермент, как ключ, открывает только свой замок. Ферменты бывают растительные, животные и те, которые производит наш организм. Они всегда работают в определенной среде и условиях. Для них важна рН-среда, температура, наличие микроэлементов, витаминов и аминокислот.

Поскольку ферменты — это белковая структура, при температуре около 48°С они коагулируются (разрушаются). Ферменты животного происхождения — это, по сути, высушенный фермент железы животного.

И неприятность в том, что ферменты животного происхождения наш организм распознает, как свои и со временем функции желез, вырабатывающих собственные ферменты значительно снижаются, а при болезни органа и вовсе могут приблизиться к нулю.

Пельмени — шок для ферментов

Кислотно-щелочная среда имеет огромное значение для ферментов. Одни ферменты работают в кислой среде, а другие в щелочной. Именно поэтому медики рекомендуют раздельное питание, а иногда — добавочный прием ферментов.

Приведем пример: многие из вас наверняка замечали, что после хорошей порции пельменей нередко мучает отрыжка. Потому что пельмени — это мясной фарш и тесто. Чтобы расщепить мясо, нужны ферменты, работающие в кислой среде, а чтобы расщепить тесто — ферменты из щелочной среды. Вспоминаем химию.

Кислота + щелочь = новый продукт и газ, который и выходит в виде отрыжки! Так что пельмени — скорее повод побаловать вкусовые рецепторы, чем польза для организма. Любое мясо лучше кушать с овощами и зеленью, которые содержат собственные ферменты и помогают организму справиться с белковым продуктом.

Как заставить правильно работать ферменты пищеварения?

Съев определенную пищу, мы должны перевести ее в доступную для нашего организма форму. И ферменты выступают здесь катализаторами процессов. На каждом этапе пищеварения работают свои группы ферментов. Давайте рассмотрим основные.

Амилаза

Вырабатывается слюнной железой. Благодаря чему в ротовой полости начинается первичный процесс ферментации, расщепления пищи. Поэтому правильное пищеварение начинается с тщательного пережевывания пищи.

Амилаза преобразует крахмал в глюкозу. Этот фермент не активен в желудочном соке, поэтому сахар лучше есть вприкуску — так в ротовой полости начнется его первичное расщепление.

Например, если пожевать 2-3 минуты кусочек черного хлеба, он приобретает сладковатый вкус, это означает, что фермент амилаза расщепил крахмал до глюкозы. Один этап пищеварения преодолен. Продолжайте жевать.

Чем дольше вы жуете — тем длиннее будет ваша жизнь.

Если амилаза поработала недостаточно, крахмал или сахара другими ферментами не расщепляются. Когда они попадут в толстый кишечник, то станут пищей для грибов, в частности рода Candida. Так что плохо пережеванный сахар помимо метеоризма может подарить вам еще и кандидоз.

Протеазы

Класс ферментов, которые расщепляют белки. Вырабатываются желудком, поджелудочной железой и кишечным секретом. В желудке начинает свою работу фермент пепсин. Он активен при рН 2, т. е.

в кислой среде, расщепляет белки до пептидов. Если у человека гастрит, то идет сбой выработки и других ферментов желудка, участвующих в расщеплении белков.

Особое внимание медиков привлекла способность этой группы ферментов расщеплять белки, вызывающие воспаление.

Если образуется недостаток протеаз, это приводит к тому, что белки не смогут расщепиться до конца и часть белков попадает в толстый кишечник.

У нас в кишечнике живет более 500 активных видов микрофлоры. Одни ее представители для нас полезны, другие — нейтральны до тех пор, пока не получают нужного питания.

Нерасщепленные белки — как раз та пища, которой им не хватает. Подкрепившись, нейтральная флора начинает активно размножаться и переходит в патогенную, опасную для нас.

Происходит резкое изменение микрофлоры и развивается дисбактериоз.

Лактаза

Выделяется тонким кишечником, для расщепления молочного сахара, он переходит в глюкозу.

Липаза

Фермент синтезируется поджелудочной железой для двенадцатиперстной кишки и тонкого кишечника, где идет расщепление жиров на глицерин и высшие жирные кислоты.

Также печенью выделяется желчь, которая позволяет расщепить жир из крупных капель на маленькие и дальше под действием липазы на мельчайшие формы. Переходя в питательные вещества, они впитываются в кишечнике и разносятся кровью к клеткам. Ферменты в клетках печени срабатывают миллион раз за 1 секунду.

При недостатке липазы жиры не до конца расщепляются и в виде крупных капель достигают толстого кишечника, вызывая раздражение его стенок, формируется синдром раздраженного кишечника.

Как понять, что ферментов в организме недостаточно?

Недостаток ферментов мы можем почувствовать на физическом уровне, если в течение 30 минут — часа ощущаем в области живота тяжесть, ноющую боль, распирание в животе или если вас клонит ко сну — проанализируйте содержимое своей тарелки и что было с ней рядом!

Может, это банальное отсутствие ферментов, ведь последствия могут быть разные: от недополучения питательных веществ как строительного материала до серьезных заболеваний.

Чтобы всегда быть в форме, нужно обязательно помнить, что еда — это в том числе и приятное вкусное лекарство. Практически все можно отрегулировать правильным питанием и разумным подходом!

Что уничтожает ферменты?

Температура, сахар, соль, уксус, контакт с металлом, время. Но если замороженные фрукты взбить в шербет, то в течение 15 минут вы получите изумительный коктейль из ферментов. Правда, желательно скушать его побыстрее, иначе в нем пойдут обратные процессы.

На земле существует немало продуктов, которые содержат ферменты.

Продукты, содержащие высокоактивные ферменты, способствующие очищению: бананы, манго, папайя, ананас, авокадо, киви, брусника, грейпфрут.

С осторожностью — чеснок, лук, сырая и квашеная капуста, сырые без химикатов морковь и свекла, редьки, пророщенное зерно, кроме пшеницы, мягкие сыры. А вот орехи, напротив, являются ингибиторами (блокаторами) ферментов, поэтому, готовя овощные салаты с орехами и семечками, подумайте, что для вас в прерогативе: наслаждение или польза?

Вещества, разрушающие ферменты: яичный белок, проросшая картошка, горох, бобы, чечевица, семечки, поэтому эти продукты лучше употреблять с вареной пищей, где априори уже не будет ферментов.

При нехватке ферментов, помимо того что в кишечнике бактерии и грибы начинают расти на непереваренных остатках пищи, начинаются запоры, болезни, связанные с нарушением обмена веществ (фосфорно-кальциевый обмен): боли в суставах и подагра, образуются кристаллы мочевой кислоты, которая скапливается в суставах.

Правильное пищеварение — это база как для здоровья, так и для развития болезни. Не забывайте об этом всякий раз, размышляя о том, чем бы подкрепиться.

Источник: https://weekend.rambler.ru/items/36906263-fermenty-chto-est-i-ot-chego-otkazatsya-chtoby-zastavit-ih-rabotat/

Ферменты пищеварительной системы

Ферменты расщепляющие белки при пищеварении секретируются

Ферменты (синоним: энзимы) пищеварительной системы – это белковые катализаторы, которые вырабатываются пищеварительными железами и расщепляют питательные вещества пищи на более простые компоненты в процессе пищеварения.

Ферменты (лат.), они же энзимы (греч.), делят на 6 основных классов.

Ферменты, работающие в организме, можно также разделить на несколько групп:

1. Метаболические ферменты – катализируют практически все биохимические реакции в организме на клеточном уровне. Их набор специфичен для каждого типа клеток.

Два наиболее важных метаболических фермента: 1) супероксиддисмутаза (superoxide dismutase, SOD), 2) каталаза (catalase). Супероксиддисмутаза защищает клетки от окисления.

Каталаза разлагает опасную для организма перекись водорода, образующуюся в процессе обмена веществ, на кислород и воду.

2. Пищеварительные ферменты – катализируют расщепление сложных питательных веществ (белков, жиров, углеводов, нуклеиновых кислот) на более простые компоненты. Производятся и действую эти ферменты в пищеварительной системе организма.

3. Пищевые ферменты – поступают в организм вместе с пищей.

Любопытно, что некоторые пищевые продукты предусматривают в процессе своего изготовления этап прохождения ферментации, во время которого насыщаются активными ферментами.

Микробиологическая обработка пищевых продуктов также обогащает их ферментами микробного происхождения. Разумеется, что наличие готовых дополнительных ферментов облегчает переваривание таких продуктов в желудочно-кишечном тракте.

4. Фармакологические ферменты – вводятся в организм в виде лекарственных препаратов в лечебных или профилактических целях. Пищеварительные ферменты – одна из наиболее часто используемых в гастроэнтерологии групп препаратов.

Основным показанием для использования ферментных средств является состояние нарушенного переваривания и всасывания пищевых веществ – синдром мальдигестии/мальабсорбции.

Этот синдром имеет сложный патогенез и может развиваться под воздействием различных процессов на уровне секреции отдельных пищеварительных желез, внутрипросветного пищеварения в желудочно–кишечном тракте (ЖКТ) или всасывания.

Наиболее частыми причинами расстройств переваривания и всасывания пищи в практике гастроэнтеролога являются хронический гастрит с пониженной кислотообразующей функцией желудка, постгастрорезекционные расстройства, желчнокаменная болезнь и дискинезии желчевыводящих путей, экзокринная панкреатическая недостаточность.

В настоящее время мировая фармацевтическая промышленность выпускает большое количество ферментных препаратов, которые отличаются друг от друга как дозой содержащихся в них пищеварительных ферментов, так и различными добавками. Препараты ферментов выпускаются в различной форме – в виде таблеток, порошка или капсул.

Все ферментные препараты можно разделить на три большие группы: таблетированные препараты, содержащие панкреатин или пищеварительные ферменты растительного происхождения; препараты, в состав которых входят, помимо панкреатина, компоненты желчи, и препараты, выпускаемые в виде капсул, содержащих микрогранулы с энтеросолюбильной оболочкой. Иногда в состав ферментных препаратов включают адсорбенты (симетикон или диметикон), которые уменьшают выраженность метеоризма.

Группы пищеварительных ферментов

  • Протеолитические (протеазы, пептидазы) – расщепляют белки до коротких пептидов или аминокислот.
  • Липолитические (липазы) – расщепляют жиры до глицерина и жирных кислот.
  • Амилолитические (амилазы, карбогидразы) – расщепляют полисахариды (крахмал) до более простых сахаров (дисахаридов или моносахаридов).
  • Нуклеазы – расщепляют нуклеиновые кислоты до нуклеотидов.

 Таблица ферментов ЖКТ (желудочно-кишечного тракта)

Отдел ЖКТФерментСубстратПродуктОптимальная среда
Ротовая полостьАмилаза (синонимы: птиалин, диастаза, α-амилаза, КФ 3.2.1.1; 1,4-α-D-глюкан-глюканогидролаза; гликогеназа; гликозил-гидролаза)Крахмал.Мишень: α-1,4-гликозидные связи между мономерами.Олигосахариды, мальтоза (солодовый сахар, дисахарид глюкозы)Слабо щелочная. pH 6,7-7,0. Ионы Са2+
Мальтаза (кислая α-глюкозидаза)Мальтоза (солодовый сахар)Глюкоза
Все основные ферменты ЖКТ в минимальных (следовых) количествах
ПищеводНе выделяет собственных ферментов, в нём продолжается действие на пищу ферментов слюны
ЖелудокПепсинОтносится к гидролазам и, в частности, к эндопептидазам, т.е. он расщепляет центральные пептидные связи в молекулах белков и пептидов. Имеет 12 различных изоформ.Белки.Главные мишени: связи ароматических аминокислот тирозина и фенилаланинаПептиды (пептоны), свободные аминокислотыКислая. рН 1,9. Для изоформ: 2,1-3,9
Химозин (сычужный фермент)Белки молока (казеиноген)Кислая, ионы Са2+
Желатиназа (пепсин В, парапепсин I)Белки: коллаген, эластинКислая. рН 2,1.
Липаза (желудочная)Эмульгированные жирыГлицерин + жирные кислотыКислая
УреазаМочевинаАммиак + СО2Щелочная. pH 8,0
ДПК (двенадцатиперстная кишка)Липаза (стеапсин)Жиры (липиды).С помощью желчи переваривает жиры и жирные кислоты, а также жирорастворимые витамины A, D, E, K.Глицерин + жирные кислотыЩелочная
ТрипсинБелки и пептиды.Главные мишени: связи между остатками положительно заряженных аминокислот лизина и аргинина.Превращает проферменты гидролаз в активные ферменты. Переваривает в том числе сам себя. Также катализирует гидролиз восков – сложных эфиров.АминокислотыЩелочная. pH 7,8-8.
Химотрипсин
АмилазаКрахмалМальтоза(солодовый сахар)
Энтеропептидаза (энтерокиназа из группы эндопептидаз, пептид-гидролаза) – важный вспомогательный фермент, который не занимается перевариванием пищиТрипсиноген.Энтеропептидаза превращает неактивный фермент поджелудочной железы трипсиноген в активный трипсин.Трипсин.Щелочная.
Тонкий кишечникЭрепсинБелокЩелочная.
Аланинаминопептидаза (ААП)Относится к эндопептидазам, т.к. отщепляет N-концевую аминокислоту в молекуле пептида.Пептиды, получившиеся в результате расщепления белков в желудке и ДПК.Аминокислоты и дипептиды, содержащие пролин (вида X-Pro)Щелочная.
ЛипазаЖирные кислотыЩелочная.
Мальтаза (кислая α-глюкозидаза)Мальтоза (солодовый сахар)ГлюкозаЩелочная.
ИзомальтазаМальтоза и изомальтозаГлюкозаЩелочная.
СахаразаСахароза (свекловичный или тростниковый сахар)Глюкоза+фруктозаЩелочная.
ЛактазаЛактоза (молочный сахар)Глюкоза+галактозаЩелочная.
НуклеазыНуклеиновые кислотыНуклеотиды
Толстый кишечникФерменты микроорганизмов, входящих в состав микробиоты толстой кишки

Источник: http://kineziolog.su/content/fermenty-pishchevaritelnoy-sistemy

Переваривание белков

Ферменты расщепляющие белки при пищеварении секретируются

Свойства пептидгидролаз. Протеолитические ферменты животных и человека изучены достаточно хорошо, в меньшей степени исследованы растительные протеазы.

Для протеолитических ферментов характерен ряд общих свойств и особенностей.

Ферменты, расщепляющие белки, обладают относительной субстратной специфичностью, которая определяется:

  • • длиной полипептидной цепи;
  • • структурой радикалов аминокислотных остатков, образующих гидролизуемую пептидную связь;
  • • положением связи в полипептиде.

Внутренние пептидные связи расщепляются эндопептидазами, концевые — экзопептидазами:

Известно, что скорость гидролиза протеазами денатурированных белков выше, чем нативных, поскольку при денатурации белков (например, в желудке под действием соляной кислоты при pH – 1,5—2,0) становятся доступными для протеолиза внутренние участки полипептидной цепи, ранее плотно упакованные в компактную глобулу.

Все протеолитические ферменты синтезируются в виде неактивных предшественников, называемых зимогенами или проферментами, и таким образом клетки защищены от контакта с активной формой фермента и автолиза. Превращение зимогена в активный фермент происходит путем необратимой кова-

Рис. 24.2. Схема последовательной деградации пишевых белков в желудочно-кишечном тракте

пентнои моошрикации зимогена за счет локального протеолиза, т. е. разрыва одной или нескольких пептидных связей и отщепления ограниченного числа аминокислотных остатков. Это вызывает конформационные изменения в полипептиде, достаточные для формирования пространственной структуры активного центра фермента.

Общая схема деградации белков пищи протеолитическими ферментами в пищеварительном тракте представлена на рис. 24.2.

Расщепление пищевых белков начинается с действия протеолитического фермента желудка — пепсина. Специализированные (периетальные) клетки эпителия желудка секретиру- ют соляную кислоту, создавая в желудке кислую среду (pH – 1,5—2.0).

Этот фактор имеет важное значение в переваривании белков: денатурирует белки пищи, оказывает бактерицидное действие, убивая попадающие с пищей микроорганизмы, является инициирующим фактором активации пепсиногена и превращения его в активную форму.

Пспсиноген превращается в пепсин после отщепления от него 42 аминокислотных остатков, вначале под действием соляной кислоты (медленно), а затем аутокаталитически (очень быстро). Молекулярная масса пепсиногена 40,4 kDa, пепсина — 32,7 kDa.

Пепсин является эндонуклеазой, и его действие приводит к накоплению смеси пептидов; наиболее активно он гидролизует пептидные связи, NH-rpynna которых принадлежит ароматическим аминокислотам — тирозину, фенилаланину, триптофану. В слизистой желудка человека выделен также протеолитический фермент гастриксин, сходный по свойствам с пепсином.

Секреция соляной кислоты активируется гистамином и гормонами гаст- ринами. их образование угнетается гормоном слизистой двенадцатиперстной кишки — секретином и гормоном гипофиза — соматостатином.

Дальнейшее переваривание высокомолекулярных пептидов и белков, не расщепленных пепсином, происходит тремя эндопептидазами, вырабатываемыми поджелудочной железой в виде предшественников — трипсиногена, хи- мотрипсиногена и проэластазы.

Процесс превращения трипсиногена в трипсин происходит под действием фермента, вырабатываемого в клетках слизистой оболочки кишечника — энте- ропептидазы, а затем аутокаталитически под влиянием трипсина и сводится к отщеплению с A-конца полипептида шести аминокислотных остатков (рис. 24.3).

Трипсин обладает сравнительно узкой субстратной специфичностью, разрывая пептидные связи, в образовании которых участвуют карбоксильные группы лизина и аргинина, т. е. основных аминокислот.

В поджелудочной железе синтезируется ряд химотрипсинов (а-, р-, я-хи- мотрипсины) из двух предшественников — химотрипсиногсна А и химотрип- синогена В. Активируются зимогены в кишечнике под действием активного трипсина и химотрипсина.

Химотрипсин обладает более широкой субстратной специфичностью, чем трипсин. Он катализирует гидролиз не только пептидов, но и эфиров, амидов и других ацилпроизводных, хотя наибольшую активность он проявляет по отношению к пептидным связям, в образовании которых принимают участие карбоксильные группы ароматических аминокислот — фенилаланина, тирозина и триптофана.

В поджелудочной железе синтезируется еще одна эндопептидаза — эластаза. Название фермент получил от субстрата эластина, который он гидролизует. Эластин богат глицином и аланином, содержится в соединительной ткани. Эластаза обладает широким спектром действия, гидролизуя субстраты, не расщепляемые трипсином и химотрипсином.

Рис. 24.3. Активация протеиназ в кишечнике

В переваривании нативных белков и продуктов их гидролиза в тонком кишечнике активное участие принимают экзопептидазы. Карбоксипептидазы синтезируются в неактивном состоянии в поджелудочной железе и активируются трипсином в кишечнике.

Карбокс и пептидаза А гидролизует пептидные связи С-концевых аминокислот, образованные преимущественно ароматическими аминокислотами (фенилаланин, тирозин, триптофан), а карбоксипеп- тидаза В — связи, в образовании которых участвуют С-концевые лизин и аргинин.

Аминопсптидазы вырабатываются в клетках слизистой оболочки кишечника (энтсроцитах) сразу в активной форме.

Из кишечного сока выделены два типа аминопептидаз, различающиеся по субстратной специфичности — ала- нинаминопептидаза и лейцинаминопептидаза, первая из которых гидролизует пептидную связь, образованную W-концевым аланином, а вторая способна гидролизовать практически любую пептидную связь, образованную УУ-конце- вой аминокислотой.

Процесс переваривания пептидов, их расщепление до свободных аминокислот в тонком кишечнике завершают три- и дипептидазы.

При избыточном потреблении животных жиров и ряде патологий в нижних отделах кишечника возможно развитие гнилостных и бродильных процессов. При действии микрофлоры кишечника происходят превращения аминокислот, получившие название гниения белков в кишечнике.

Так, в процессе глубокого распада серосодержащих аминокислот (цистина, цистеина и метионина) в кишечнике образуются сероводород H2S и меркаптан CH3SH.

Диаминокислоты, в частности орнитин и лизин, подвергаются процессу дс- карбоксилирования с образованием диаминов, иногда называемых трупными ядами, поскольку они образуются также при гнилостном разложении трупов. Из орнитина образуется путресцин, а из лизина — кадаверин:

Следует отметить, что сравнительно недавно в животных тканях был открыт фермент, катализирующий декарбоксилирование орнитина. Путресцин (продукт этой реакции) наряду с 5-аденозил гомоцистеином (продуктом декар- боксилирования 5-аденизилметионина) участвует в синтезе биологически важных полиаминов — спермина и спермидина:

Полиамины, в том числе и диамин иутресцин, содержатся практически во всех тканях и входят в основном в состав ядерного хроматина. Известно их участие в регуляции клеточного деления, однако молекулярные механизмы их действия остаются не до конца выясненными.

Из фенилаланина, тирозина и триптофана при бактериальном декарбок- силировании образуются соответствующие биогенные амины: фенилэтил- амин, /7-гидроксифенилэтиламин (или тирамин) и индолилэтиламин (трипт- амин); при постепенном разрушении боковых цепей циклических аминокислот, в частности тирозина и триптофана, образуются ядовитые продукты обмена: соответственно крезол и фенол, скатол и индол:

Индол и скатол обезвреживаются в печени, предварительно окисляясь соответственно в индоксил и скатоксил, выводятся из организма в виде парных соединений, вступая в реакцию конъюгации с З-фосфоаденозин-5-фосфо- сульфатом (ФАФС) или уридиндифосфатглюкуроновой кислотой (УДФГК).

В качестве примера приведена реакция детоксикации индола, которая заканчивается образованием животного индикана, выводимого с мочой:

В результате расщепления белков в ЖКТ под действием протеолитических ферментов белки теряют свою видовую, тканевую специфичность и всасываются в кровь в тонком кишечнике в виде аминокислот.

Всасывание аминокислот, освобождающихся из белков пищи, происходит очень быстро.

Известно, например, что через 15 мин после приема меченого 15N-дрожжевого белка '-аминокислоты обнаруживаются в крови, а их максимальная концентрация достигается через 30—50 мин после приема белка.

Транспорт аминокислот через клеточные мембраны осуществляется в основном по механизму вторично-активного транспорта. В этом случае система активного транспорта приводится в действие не путем прямого гидролиза ЛТФ, а за счет энергии, запасенной в ионных градиентах.

Перенос аминокислот внутрь клеток осуществляется чаще всего как симиорт аминокислот и ионов натрия, подобно механизму сим порта сахаров и ионов натрия.

Энергия АТФ затрачивается на выкачивание Ыа+/К+-АТФ-азой ионов натрия из клетки, создания электрохимического градиента на мембране, энергия которого опосредованно обеспечивает транспорт аминокислот в клетку.

Известен ряд сходных по строению транспортных систем (транслоказ), специфичных к транспорту аминокислот: нейтральных аминокислот с небольшой боковой цепью, нейтральных аминокислот с объемным боковым радикалом кислых аминокислот, основных аминокислот, пролина.

Эти системы, связывая ионы натрия, индуцируют переход белка-переносчика в состояние с сильно увеличенным сродством к аминокислоте; Na+ стремится к транспорту в клетку по градиенту концентрации и одновременно переносит внутрь клетки молекулы аминокислоты. Чем выше градиент Na+, тем выше скорость всасывания аминокислот, которые конкурируют друг с другом за соответствующие участки связывания в транслоказе.

Известны другие механизмы активного транспорта аминокислот через плазматическую мембрану. Так, А. Майстером предложена оригинальная схема трансмембранного переноса аминокислот, получившая название у-глу томильного цикла.

Page 3

В соответствии с гипотезой у-глутамильного цикла транспорта аминокислот через клеточные мембраны роль переносчика аминокислот принадлежит широко распространенному в биологических системах трилептиду глутатиону:

Ниже приведены реакции у-глутамильного цикла.

I. Главную роль в этом процессе играет мембрано-связанный гликопротеин — фермент у-глутамилтрансфераза (ГГТФ), который катализирует перенос у-глутамильного остатка глутатиона на транспортируемую аминокислоту, т. е.

глутатион выполняет роль донора у-карбоксильной группы глутаминовой кислоты, а аминокислота — акцептор этой группы:

Рис. 24.4. Схема перкой реакции у-глутамильного цикла

2. Комплекс у-глутамиламинокислота после переноса через мембрану распадается внутри клетки под действием у-глутамилциклотрансферазы на свободную аминокислоту и 5-оксопролин:

3. Образовавшиеся в первой реакции цистеин ил глицин гидролизуется пептидазой:

Все последующие реакции у-глутам ильного цикла направлены на регенерацию глутатиона, необходимого для продолжения процесса.

4. В этой реакции 5-оксопролин под действием АТФ-зависимой 5-оксопролиназы превращается в глутаминовую кислоту:

5. Эта реакция — синтез дипептида у-глутамилцистеина — катализируется у-глутамилцистеинсинтетазой:

6. В завершающей реакции цикла синтез глутатиона катализируется глута- тионсинтетазой:

Таким образом, благодаря ресинтезу глутатиона, требующему затраты трех молекул АТФ, цикл может повторяться многократно.

Однако это только один из возможных механизмов транспорта аминокислот, поскольку ключевой фермент этого процесса — у-глутамилтрансфераза обладает узкой специфичностью: активен к полярным незаряженным аминокислотам, например цистеину, серину; менее активен к дикарбоновым аминокислотам; пролин — вообще таким путем не транспортируется через мембрану.

Все ферменты у-глутамильного цикла обнаружены в высоких концентрациях в разных тканях — почках, эпителии ворсинок тонкого кишечника, слюнных железах, желчном протоке, семенных пузырьках и др. После всасывания в кишечнике аминокислоты через воротную вену поступают в печень, а затем разносятся кровью во все органы.

Page 4

Аминокислоты в организме прежде всего используются для синтеза белков и пептидов. Кроме этого, ряд аминокислот служат предшественниками для образования соединений непептидной природы: пуриновых и пиримидиновых оснований, биогенных аминов, порфиринов (в том числе гема), никотиновой кислоты, креатина, холина, таурина, тироксина и ряда других.

Из углеродного скелета гликогенных аминокислот синтезируются углеводы, кетогенных — липиды и кетоновые тела.

Основным органом метаболизма аминокислот является печень, где происходят многие синтетические процессы, связанные с использованием аминокислот, а также важный процесс перераспределения избыточных количеств, потребляемых с пищей углеродных цепей аминокислот и азота.

В последние годы выяснено, что время «полужизни» белков детерминировано природой его N-концевой аминокислоты.

Если она легко соединяется с убиквитином — небольшим белком с молекулярной массой ~ 8,5 kDa, состоящим из 74 аминокислотных остатков, то такой убиквитированный белок атакуется протеиназами и разрушается.

Наиболее подвержены убиквитированию аргинин, лизин, аспарагиновая кислота, аспарагин, триптофан, лейцин, фенилаланин, гистидин, глутаминовая кислота, тирозин, глутамин, изолейцин; менее подвержены — метионин, серин, аланин, треонин, валин, глицин, цистеин, их относят к стабилизирующим гидролитический распад белков.

Подсчитано, что время «полужизни» цитоплазматических белков, имеющих в качеств /V-концевой аминокислоты аргинин, составляет 2 мин; аспарагиновой кислоты, лизина — 10 мин, глутаминовой кислоты и изолейцина — 30 мин.

Таким образом, деструкция белковых молекул высокоселективна, и убик- винтин является одним из механизмов этой селективности. Установлено, что в мечении белков для деструкции могут играть роль также шапероны. Некоторые белки имеют время «полужизни» более чем 20 ч (белки печени — даже несколько дней), а другие — несколько минут.

Источник: https://studme.org/236768/meditsina/perevarivanie_belkov

Переваривание белков. Этапы и последовательность переваривания белков

Ферменты расщепляющие белки при пищеварении секретируются

Пищевые белки химически представляют собой длинные цепи аминокислот, соединенных друг с другом пептидными связями.
Характеристика каждого белка определяется типом аминокислот в молекуле белка и последовательностью расположения этих аминокислот.

Переваривание белков в желудке. Пепсин — важный фермент желудка, расщепляющий белки. Он наиболее активен при рН 2,0-3,0 и не активен при рН выше 5,0. Вследствие этого для проявления расщепляющего действия белка ферментом желудочный сок должен быть кислым.

Как объяснено в главе 64, железы желудка секретируют большое количество соляной кислоты. Эта кислота секретируется париетальными (кислотопродуцирующими) клетками желез при рН, равным приблизительно 0,8.

К моменту, когда кислота смешивается с желудочным содержимым и секретом из некислотопродуцирующих железистых клеток желудка, рН уже составляет в среднем 2,0-3,0, что чрезвычайно благоприятно для активности пепсина.

Одной из важных переваривающих особенностей пепсина является его способность переваривать белок коллаген — альбуминоподобный тип белка, который лишь незначительно расщепляется под действием других пищеварительных ферментов.

Коллаген — главная составляющая часть межклеточной соединительной ткани мяса; поэтому для расщепления белков мяса ферментами пищеварительного тракта прежде всего необходимо переварить коллагеновые нити.

В связи с этим у индивида, у которого отмечается недостаток пепсина в желудочном соке, съеденное мясо хуже подвергается обработке другими пищеварительными ферментами и, следовательно, может хуже перевариваться.

Пепсин только начинает процесс переваривания белка, обычно обеспечивая только 10-20% полного переваривания белков и превращение их в альбумозы, пептоны и мелкие полипептиды. Это расщепление белков происходит в результате гидролиза пептидной связи между аминокислотами.

Переваривание белков секретами поджелудочной железы.

Переваривание белка преимущественно происходит в верхних отделах тонкого кишечника, в двенадцатиперстной кишке и тощей кишке под воздействием протеолитических ферментов, секретируемых поджелудочной железой.

Частично расщепленные продукты белковой пищи, поступая в тонкий кишечник из желудка, подвергаются воздействию главных протеолитических панкреатических ферментов: трипсина, хемотрипсина, карбоксиполипептидазы и проэластазы.

Трипсин и хемотрипсин расщепляют молекулы белка на небольшие полипептиды; карбоксиполипептидаза отщепляет отдельные аминокислоты от карбоксильного конца полипептидов.

Проэластаза, в свою очередь, превращается в эластазу, которая затем переваривает эластические волокна, частично содержащиеся в мясных продуктах. Под действием панкреатического сока небольшой процент белков переваривается до аминокислот.

Большинство белков расщепляется до дипептидов и трипептидов.

Переваривание белков пептидазами энтероцитов, встроенных в ворсинки тонкого кишечника.

Заключительный этап переваривания белков в просвете кишечника обеспечивается энтероцитами тонкого кишечника, которые покрыты ворсинками, преимущественно в двенадцатиперстной кишке и тощей кишке.

Эти клетки имеют щеточную каемку, которая состоит из сотен микроворсинок, выступающих над поверхностью клетки. В мембране каждой из этих микроворсинок содержатся многочисленные пептидазы, которые выступают над мембраной, где они взаимодействуют с кишечной жидкостью.

Наиболее важны два типа пептидаз: аминополипептидаза и некоторые дипептидазы. Они доводят расщепление оставшихся крупных полипептидов до дипептидов, трипептидов и меньшего числа аминокислот. И аминокислоты, и дйпептиды с трипептидами свободно транспортируются сквозь мембрану микроворсинок во внутреннюю часть энтероцита.

Наконец, внутри цитозоля энтероцитов находятся другие многочисленные пептидазы, которые специфичны для оставшихся связей между аминокислотами. В течение нескольких минут практически все оставшиеся дипептиды и трипептиды перевариваются до конечной стадии в форме отдельных аминокислот; далее они выходят через другую сторону энтероцита, а отсюда — в кровь.

Более 99% конечных продуктов переваривания белков, которые всасываются, являются одиночными аминокислотами. Очень редко происходит всасывание пептидов и чрезвычайно редко всасывается целая молекула белка. Даже крайне малое число всосавшихся молекул цельного белка может иногда вызывать серьезные аллергические или иммунологические нарушения.

– Также рекомендуем “Переваривание жиров. Этапы переваривания жиров в кишечнике”

Оглавление темы “Пищеварительные соки. Переваривание углеводов, белков, жиров”:
1. Регуляция секреции поджелудочной железы. Этапы панкреатической секреции
2. Физиология секреции желчи. Физиологическая анатомия секреции желчи
3. Состав желчи. Функция желчи в переваривании жиров
4. Холестерол и желчные камни. Секреция в двенадцатиперстной кишке
5. Секреция кишечного пищеварительного сока. Состав кишечного пищеварительного сока
6. Секреция в толстом кишечнике. Гидролиз питательных веществ
7. Переваривание углеводов. Последовательность переваривания углеводов в ЖКТ
8. Переваривание белков. Этапы и последовательность переваривания белков
9. Переваривание жиров. Этапы переваривания жиров в кишечнике
10. Переваривание триглицеридов. Формирование жировых мицелл

Источник: https://meduniver.com/Medical/Physiology/1154.html

ГастритаНет
Добавить комментарий