Гниение аминокислот в кишечнике обезвреживание продуктов гниения

Гниение аминокислот, обезвреживание продуктов гниения

Гниение аминокислот в кишечнике обезвреживание продуктов гниения

ГНИЕНИЕ АМИНОКИСЛОТ

Аминокислоты, которые не подверглись всасыванию, поступают в толстую кишку, где подвергаются гниению. ГНИЕНИЕ АМИНОКИСЛОТ – это процесс распада аминокислот под действием ферментов, вырабатывающихся микрофлорой толстого отдела кишечника. Аминокислоты при гниении подвергаются следующим превращениям:

РЕАКЦИИ ДЕКАРБОКСИЛИРОВАНИЯ:

Подвергаются орнитин и лизин. ОРНИТИН в состав белков не входит, но обязательно содержится в организме. Проукты декарбоксилирования – ПУТРЕСЦИН и КАДАВЕРИН – являются токсическими веществами. Они входят в состав трупных ядов. ВОССТАНОВИТЕЛЬНОЕ ДЕЗАМИНИРОВАНИЕ: (на примере аланина)

ДЕСУЛЬФИРОВАНИЕ

Десульфированию подвергаются серосодержащие аминокислоты (метионин, цистеин). В результате образуются сероводород, метилмеркаптан.

РАСПАД ЦИКЛИЧЕСКИХ АМИНОКИСЛОТ

При распаде тирозина, фенилаланина, триптофана образуются метан, углекислый газ, аммиак, фенол, крезол, индол.

Все эти вещества токсические. Они поступают в печень, где и происходит их обезвреживание. В печени имеется две системы, участвующие в обезвреживании этих веществ:

1.УДФГК – УРИДИНДИФОСФОГЛЮКУРОНОВАЯ К-ТА.

2.ФАФС-ФОСФОАДЕНОЗИНФОСФОСУЛЬФАТ.

Процесс обезвреживания – это процесс конъюгации токсических веществ с компонентами одной из этих систем, и образования конъюгатов, которые являются уже нетоксичными веществами.

ИНДОКСИЛСУЛЬФАТ нейтрализуется и превращается в натриевую или калиевую соль.

Все эти вещества выводятся из организма с мочой.

В норме реакция на индол должна быть отрицательна. При положительной реакции на индол – нарушена обезвреживающая функция печени. Положительная реакция на ИНДИКАН наблюдается при очень активном гниении белков в толстом кишечнике.

Метаболизм аминокислот

Метаболизм аминокислот

Источниками аминокислот в клетке являются:

1.белки пищи после их гидролиза в органах пищеварения;

2.синтез заменимых аминокислот;

3.распад тканевых белков.

Тканевые белки подвергаются гидролитическому расщеплению при участии тканевых ПРОТЕАЗ – КАТЕПСИНОВ, которые в основном находятся в ЛИЗОСОМАХ. Выделяют разные КАТЕПСИНЫ, которые отличаются оптимумом рН и специфичностью действия. Распад тканевых белков необходим для обновления белков, а также для устранения дефектных молекул белка.

Несмотря на то, что почти для каждой аминокислоты выяснены индивидуальные пути обмена, известен ряд превращений, общих для многих аминокислот:

ТРАНСАМИНИРОВАНИЕ; ДЕКАРБОКСИЛИРОВАНИЕ; ДЕЗАМИНИРОВАНИЕ.

ТРАНСАМИНИРОВАНИЕ – реакции межмолекулярного переноса аминогруппы от аминокислоты на кетокислоту без промежуточного образования аммиака.

Особенности реакций трансаминирования:

протекают при участии ферментов – аминотрансфераз;

для реакций необходим кофермент – пиридоксальфосфат (ПФ);

реакции обратимы;

могут подвергаться все аминокислоты кроме лиз, тре;

в результате реакции образуются новая аминокислота и новая кетокислота.

Роль реакций ТРАНСАМИНИРОВАНИЯ:

1.Синтез заменимых аминокислот. При этом происходит перераспределение азота в органах и тканях;

2.Являются начальным этапом катаболизма аминокислот.

Реакции ДЕКАРБОКСИЛИРОВАНИЯ – отщепление альфа – карбоксильной группы аминокислот в виде углекислого газа.

При этом аминокислоты в тканях образуют биогенные амины, которые являются биологически активными веществами (БАВ). Среди них могут быть соединения, которые выполняют функции:

1.НЕЙРОМЕДИАТОРОВ (СЕРОТОНИН, ДОФАМИН, ГАМК),

2. Гормоны (АДРЕНАЛИН, НОРАДРЕНАЛИН),

3. Регуляторы местного действия (ГИСТАМИН).

ГАМК является НЕЙРОМЕДИАТОРОМ тормозного действия, поэтому препараты на основе ГАМК используются в клинике для лечения некоторых заболеваний ЦНС. Эта реакция используется в педиатрической практике: детям при сильном возбуждении используют раствор витамина В6, который стимулирует процесс образования ГАМК.

ДОФАМИН является НЕЙРОМЕДИАТОРОМ возбуждающего действия. Он является основой для синтеза АДРЕНАЛИНА и НОРАДРЕНАЛИНА.

Реакции ДЕЗАМИНИРОВАНИЯ – отщепление NН2-группы в виде аммиака. ОКИСЛИТЕЛЬНОЕ ДЕЗАМИНИРОВАНИЕ. Непосредственно, ОКИСЛИТЕЛЬНОМУ ДЕЗАМИНИРОВАНИЮ подвергается только ГЛУ.

НЕПРЯМОЕ ДЕЗАМИНИРОВАНИЕ

Этому виду дезаминирования подвергаются остальные аминокислоты, но через стадию трансаминирования с альфа-кетоглутаровой кислотой. Затем глутаминовая кислота (продукт этой реакции) подвергается окислительному дезаминированию.

Пути обезвреживания аммиака

Аммиак образуется из аминокислот при распаде других азотсодержащих соединений (биогенных аминов, НУКЛЕОТИДОВ). Значительная часть аммиака образуется в толстой кишке при гниении. Он всасывается в кровь системы воротной вены, здесь концентрация аммиака больше, чем в общем кровотоке.

Аммиак образуется в различных тканях. Концентрация его в крови незначительна, т.к. он является токсичным веществом (0,4 – 0,7мг/л).

Особенно выраженное токсическое действие он оказывает на нервные клетки, поэтому значительное его повышение приводит к серьёзным нарушениям обменных процессов в нервной ткани.

ПУТИ ОБЕЗВРЕЖИВАНИЯ АММИАКА.

1. образование АМИДОВ

ГЛУТАМИН и АСПАРАГИН – нетоксические вещества. Их называют транспортной формой аммиака в организме. Они не проникают через мембраны и в почках распадаются до аминокислот и аммиака.

2. Восстановительное АМИНИРОВАНИЕ альфа – кетоглутаровой кислоты

3. Образование солей АММОНИЯ

4. Синтез мочевины – основной путь обезвреживания аммиака – ОРНИТИНОВЫЙ ЦИКЛ.

АРГИНАЗА обладает абсолютной специфичностью и содержится только в печени. В составе мочевины содержится два атома азота: один поступает из аммиака, а другой выводится из АСП.

Образование мочевины идёт только в печени.

Две первые реакции цикла (образование ЦИТРУЛЛИНА и АРГИНИНОСУКЦИНАТА) идут в МИТОХОНДРИЯХ, остальные в цитоплазме.

В организме в сутки образуется 25г мочевины. Этот показатель характеризует мочевинообразовательную функцию печени. Мочевина из печени поступает в почки, где и выводится из организма, как конечный продукт азотистого обмена.

Глюконеогенез

ГЛЮКОНЕОГЕНЕЗ

Основными источниками глюкозы для организма человека являются:

1. углеводы пищи;

2. гликоген тканей;

3. глюконеогенез.

ГЛЮКОНЕОГЕНЕЗ – это биосинтез глюкозы из неуглеводных предшественников, главными из которых являются ПИРУВАТ, ЛАКТАТ, ГЛИЦЕРИН, МЕТАБОЛИТЫ ЦТК КРЕБСА, АМИНОКИСЛОТЫ.

ГЛЮКОНЕОГЕНЕЗ возможен не во всех тканях. Главным местом синтеза глюкозы является печень, в меньшей степени процесс идёт в почках и слизистой кишечника. Биологическая роль глюконеогенеза заключается не только в синтезе глюкозы, но и в возвращении лактата, образованного в реакциях анаэробного ГЛИКОЛИЗА, в клеточный фонд углеводов.

За счет этого процесса поддерживается уровень глюкозы в тканях в кризисных ситуациях (при углеводном голодании, сахарном диабете, тканевой гипоксии). Большинство реакций ГЛЮКОНЕОГЕНЕЗА представляют собой обратные реакции ГЛИКОЛИЗА, за исключением трёх термодинамически необратимых: ПИРУВАТКИНАЗНОЙ, ФОСФОФРУКТОКИНАЗНОЙ, ГЕКСОКИНАЗНОЙ.

Эти реакции при ГЛЮКОНЕОГЕНЕЗЕ имеют обходные пути и связаны с образованием 2-фосфоенолпирувата, фруктозо-6-фосфата и глюкозы.

Обходные реакции

Образовавшаяся в реакциях глюконеогенеза, глюкоза может вновь участвовать в клеточном метаболизме как пластический, энергетический материал, откладываться про запас в виде гликогена.



Источник: https://infopedia.su/16x70d6.html

Использование аминокислот организмом

Гниение аминокислот в кишечнике обезвреживание продуктов гниения

Использование аминокислот организмом

Предыдущая: Переваривание и всасывание белков

ПРОЦЕССЫ ГНИЕНИЯ БЕЛКОВ В КИШЕЧНИКЕ

Строго говоря, речь идет о разнообразных превращениях свободных аминокислот, а не белков пищи, под действием микрофлоры нижнего отдела кишечника. Известно, что микроорганизмы кишечника для своего роста также нуждаются в доставке с пищей определенных аминокислот.

Кроме того, микрофлора кишечника располагает набором ферментных систем, отличных от соответствующих ферментов животных тканей и катализирующих разнообразные превращения пищевых аминокислот (окисление, восстановление, дезаминирование, декарбоксилирование, распад).

Благодаря этому в кишечнике создаются оптимальные условия для образования ядовитых продуктов распада аминокислот, в частности фенола, индола, крезола, скатола, сероводорода, метилмеркаптана, а также нетоксичных для организма ряда других соединений – спиртов, аминов, жирных кислот, кетокислот, гидроксикислот и др.

Все эти превращения аминокислот, вызванные деятельностью микроорганизмов кишечника, получили общее название гниения белков в кишечнике. Так, в процессе постепенного и глубокого распада серосодержащих аминокислот (цистина, цистеина и метионина) в кишечнике образуются сероводород (H2S) и метилмеркаптан (CH3SH).

Диаминокислоты, в частности орнитин и лизин, подвергаются процессу декарбоксилирования с образованием протеиногенных аминов (их иногда называют птомаинами, или трупными ядами, поскольку они образуются также при гнилостном разложении трупов).

Из орнитина образуется путресцин, а из лизина – кадаверин [показать] .

Оба амина легко всасываются в кровь и выделяются с мочой; следует указать, что в моче они открываются в редких случаях, в частности при холере, гастроэнтеритах, а также при наследственной цистинурии. Вероятнее всего, оба этих амина обезвреживаются уже в клетках слизистой оболочки кишечника под влиянием специфической диаминоксидазы (см. ниже).

Из ароматических аминокислот фенилаланина, тирозина и триптофана при аналогичном бактериальном декарбоксилировании образуются соответствующие биогенные амины: фенилэтиламин, парагидроксифенилэтиламин (или триптамин) и индолилэтиламин (триптамин).

Помимо этого процесса, микробные ферменты кишечника вызывают постепенное разрушение боковых цепей циклических аминокислот, в частности тирозина и триптофана, с образованием ядовитых продуктов обмена: соответственно крезола и фенола, скатола и индола [показать] .

После всасывания эти продукты через воротную вену попадают в печень, где они подвергаются обезвреживанию путем химического связывания с серной или глюкуроновой кислотой с образованием нетоксичных, так называемых парных, кислот (например, фенолсерная кислота или скатоксилсерная кислота). Последние выделяются с мочой.

Механизм обезвреживания этих продуктов расшифрован в деталях.

В печени содержатся специфические ферменты – арилсульфотрансфераза и УДФ-глюкуронилтрансфераза, катализирующие соответственно перенос остатка серной кислоты из ее связанной формы – 3'-фосфоаденозин-5'-фосфосульфата (ФАФС) и остатка глюкуроновой кислоты также из ее связанной формы – уридиндифосфоглюкуроновой кислоты (УДФГК) на любой из указанных выше продуктов.

Источником ФАФС являются промежуточные продукты обмена пуриновых нуклеотидов и углеводов; не исключено возможное участие рибозо-5-фосфата, который образуется в процессе пентозо-фосфатного пути окисления глюкозы. Предшественниками УДФГК в организме являются метаболиты глюкозы и УТФ. Cм.

химическое строение ФАФС и УДФГК и в качестве примера механизм обезвреживания индола:

Индол (как и скатол) предварительно подвергается окислению в индоксил (соответственно скатоксил), который взаимодействует непосредственно в ферментативной реакции с ФАФС:

Индол связывается в виде эфиросерной кислоты, калиевая или натриевая соль которой получила название животного индикана, который выводится с мочой. По количеству индикана в моче у человека судят о скорости процессов гниений белков в кишечнике и о функциональном состоянии печени. Таким образом, определение индикана имеет большое клиническое значение.

Ряд других аминокислот также подвергается распаду под действием ферментов микроорганизмов кишечника (фенилаланин, лизин, орнитин и др.), однако образующиеся из них продукты гниения не представляют большой опасности для организма, поскольку они менее токсичны, чем указанные выше соединения.

Существенный интерес с точки зрения клиники представляет механизм обезвреживания бензойной кислоты, которая после всасывания из кишечника связывается в печени с глицином согласно уравнению:

Реакция требует доставки энергии и присутствия КоА. По скорости образования и выделения гиппуровой кислоты с мочой после приемабензойной кислоты (проба Квика) обычно судят о функциональном состоянии печени; этот тест с успехом используется в клинической практике.

Таким образом, организм человека и животных обладает рядом защитных механизмов синтеза, биологическая роль которых заключается в обезвреживании токсических продуктов, поступающих в организм извне или образующихся в кишечнике из продуктов питания благодаря жизнедеятельности микроорганизмов.

СУДЬБА ВСОСАВШИХСЯ АМИНОКИСЛОТ

Приведенная ниже схема дает представление о многообразии каналов, по которым используются аминокислоты после всасывания в кишечнике. Поступив через воротную вену в печень, они прежде всего подвергаются ряду превращений в этом органе, хотя значительная часть аминокислот разносится кровью по всему организму и используется для физиологических целей.

В печени аминокислоты используются не только для синтеза собственных белков и белков плазмы крови, но также для синтеза ряда специфических азотсодержащих соединений – пуриновых и пиримидиновых нуклеотидов, креатина, мочевой кислоты, НАД и др.

Печень обеспечивает, кроме того, сбалансированный пул свободных аминокислот организма путем синтеза незаменимых аминокислот и перераспределения азота в результате реакций трансаминирования

Как видно из представленной схемы, всосавшиеся аминокислоты в первую очередь используются в качестве строительного материала для синтеза специфических тканевых белков, ферментов, гормонов и других биологически активных соединений.

Некоторое количество аминокислот подвергается распаду с образованием конечных продуктов белкового обмена (СО2, Н2О и NH3) и освобождением энергии.

Подсчитано, что в организме взрослого человека, находящегося на полноценной диете, освобождается примерно 1200 кДж в сутки за счет окисления около 70 г аминокислот (помимо пищевых, также эндогенных аминокислот, образующихся при гидролизе тканевых белков или синтезированных de novo из углеводов и липидов).

Это количество составляет около 10% суточной потребности организма человека в энергии. Количество аминокислот, подвергающихся распаду, зависит как от характера питания, так и от физиологического состояния организма.

Например, даже при полном голодании или при частичном белковом голодании с мочой выделяется небольшое, но определенное количество азотистых веществ, что свидетельствует о постоянстве процесса распада белков тела. Аминокислоты, как и белки, не накапливаются и не откладываются в тканях (наподобие жиров и гликогена) и у взрослого человека при нормальной обеспеченности пищевым белком поддерживается довольно постоянная концентрация аминокислот в крови (0,5 г/л или около 2,5 г во всем объеме крови).

Использованию аминокислот в синтезе белка и роли в этом исключительно важном для всех живых существ процессе нуклеиновых кислот будет посвящена отдельная глава (см. Биосинтез белка). Прежде чем перейти к рассмотрению основных путей обмена аминокислот, следует остановиться вкратце на проблеме транспорта аминокислот внутрь клетки.

ТРАНСПОРТ АМИНОКИСЛОТ ЧЕРЕЗ КЛЕТОЧНЫЕ МЕМБРАНЫ

Различная скорость проникновения аминокислот через биомембраны клеток, установленная при помощи метода меченых атомов, свидетельствует о существовании в организме активной транспортной системы, обеспечивающей перенос аминокислот как через внешнюю клеточную мембрану, так и через систему внутриклеточных мембран.

Несмотря на тщательные исследования, проведенные в разных лабораториях, тонкие механизмы функционирования активной системы транспорта аминокислот пока не расшифрованы. А. Майстером предложена новая схема транспорта аминокислот через биомембраны, которая, по-видимому, активно функционирует в почечных канальцах, слизистой кишечника и в ряде других тканей, в частности в ткани мозга.

Сущность этой гипотезы можно понять из схемы [показать] .

Предполагается, что главную роль в этом процессе играет мембранно-связанный гликопротеид – фермент γ-глутамил-транспептидаза, которая катализирует перенос γ-глутамильной группы от глутатиона или другого γ-глутамильного пептида на транспортируемую аминокислоту.

Комплекс γ-глутамил – аминокислота после переноса (транслокации) через биомембрану распадается внутри клетки (или внутри субклеточного образования) под действием глутамилциклотрансферазы на свободную аминокислоту и 5-оксопролин (пироглутаминовая кислота), образование которого почти целиком сдвигает реакцию расщепления комплекса вправо. Специфичность связывания (центр узнавания) аминокислоты обусловлена молекулой самой γ-глутамилтранспептидазы благодаря существованию изоферментов. С другой стороны, предполагается, что имеются особые белки, связывающие аминокислоты, – эти белки обеспечивают доставку своих субстратов к транспептидазе. Укажем также, что благодаря легкой возможности ресинтеза глутатиона, требующего только затраты энергии АТФ, цикл может повторяться многократно. Однако, несмотря на свою оригинальность и привлекательность, схема не отвечает на ряд вопросов (включая значение Na+ в активном транспорте аминокислот).

ПРОМЕЖУТОЧНЫЙ ОБМЕН АМИНОКИСЛОТ В ТКАНЯХ

Ранее было отмечено широкое участие природных аминокислот (точнее углеродных скелетов, колец и различных функциональных групп)в синтезе биологически активных соединений. О многообразии таких синтезов свидетельствует приведенная ниже схема:

ОБЩИЕ ПУТИ ОБМЕНА АМИНОКИСЛОТ

Несмотря на то, что почти для каждой аминокислоты выяснены индивидуальные пути обмена (см. ниже), известен ряд превращений, общих почти для всех аминокислот. К этим превращениям относятся реакции дезаминирования, трансаминирования, декарбоксилирования и рацемизации. Рассмотрим подробно три первые реакции, имеющие значение для всех живых организмов.

В то же время реакции рацемизации характерны только для микроорганизмов, в которых открыты ферменты, катализнрующие рацемизацию ряда аминокислот (Ала, Глу, Про, Мет, Лиз, Сер) и эпимеризацию оксипролина и α,ε-диаминопимелиновой кислоты.

Физиологическая роль рацемаз микроорганизмов сводится к синтезу ряда D-изомеров аминокислот, которые затем используются для построения клеточной оболочки.

  • Дезаминирование аминокислот
  • Трансаминирование аминокислот Судьба α-кетокислотОбразовавшиеся в процессе дезаминирования и трансдезаминирования α-кетокислоты подвергаются в тканях животных различным превращениям. Прежде всего α-кетокислоты могут подвергаться восстановительному аминированию с образованием соответствующей аминокислоты. Это так называемый синтетический путь превращения. Опыты с перфузией растворов α-кетокислот и аммиака через изолированную печень показали, что в оттекающей из печени жидкости действительно открываются соответствующие исходным кетокислотам L-аминокислоты. Этот синтез протекает преимущественно по механизму трансреаминирования, т. е. при участии трансаминирования (см. выше). Доказаны, кроме того, глюкогенные, кетогенные и окислительные пути, ведущие к образованию глюкозы, жирных кислот, ацетоновых тел и компонентов цикла трикарбоновых кислот (рис.)Углеродные скелеты аминокислот могут включаться в ЦТК через следующие соединения: ацетил-КоА (опосредованно через пируват),ЩУК, α-КГ и сукцинил-КоА непосредственно. Пять аминокислот (Фен, Лиз, Лей, Три и Тир) считаются “кетогенными”, поскольку они являются предшественниками ацетоновых тел, в частности ацетоуксусной кислоты, в то время как большинство других аминокислот, обозначаемых как “глюкогенные”, служат в организме источником углеводов, в частности глюкозы. Подобный синтез углеводов de novo наблюдается при некоторых патологических состояниях, например при сахарном диабете, а также при гиперфункции коры надпочечников и при введении глюкокортикоидов (см. Гормоны). Такое разделение аминокислот на кетогенные и глюкогенные имеет, однако, условный характер, поскольку из 9 углеродных атомов тирозина, например, четыре используются при синтезе ацетоуксусной кислоты, а три – при синтезе глюкозы через пируват.
  • Декарбоксилирование аминокислот Судьба биогенных аминов. Накопление биогенных аминов может отрицательно сказаться на физиологическом статусе и вызывать ряд серьезных нарушений в организме. Однако органы и ткани как и целостный организм располагают специальными механизмами обезвреживания биогенных аминов, которые в общем виде сводятся к их окислительному дезаминированию с образованием соответствующих альдегидов и освобождением аммиака:Ферменты, катализирующие эти реакции, получили названия моноамин- и диаминоксидаз. Более подробно изучен механизм окислительного дезаминирования моноаминов. Этот ферментативный процесс является необратимым и протекает в две стадии:
    1. R-CH2-NH2 + E · ФАД + Н2О –> R-CHO + NH2 + E · ФАДH2
    2. ФАДH2 + O2 –> E · ФАД + Н2О2

    Видно, что в первой, анаэробной, стадии образуются альдегид, аммиак и восстановленный фермент. Последний в аэробной фазе окисляется молекулярным кислородом. Образовавшаяся перекись водорода далее распадается на воду и кислород. Моноаминоксидаза – ФАД-содержащий фермент – преимущественно локализуется в митохондриях, играет исключительно важную роль в организме, регулируя скорость биосинтеза и распада биогенных аминов. Укажем также, что некоторые ингибиторы моноаминоксидазы (ипраниазид, гармин, паргилин) нашли применение при лечении гипертонической болезни, депрессивных состояний, шизофрении и др.

Продолжение: Обезвреживание аммиака в организме

Источник: http://bono-esse.ru/blizzard/A/Chimia/Bio_chinija/ispolzovanie_aminokislot.html

Метаболизм продуктов гниения белка в организме

Гниение аминокислот в кишечнике обезвреживание продуктов гниения
artemu238Невсосавшиеся в кишечнике человека аминокислоты  высокобелковой пищи используются патогенной микрофлорой толстой кишки в качестве энергетического субстрата.

Ферменты этих гнилостных бактерий расщепляют аминокислоты и превращают их в амины, фенолы, индол, скатол, сероводород и другие ядовитые для организма соединения.

  В теле человека эти чужеродные вещества (ксенобиотики) превращаются в менее токсичные, и даже нейтральные вещества.

Процессы метаболизма ксенобиотиков осуществляются в любой клетке и обычно они приводят к превращению этих веществ в более водорастворимые и менее токсичные продукты обмена. Происходит это путем окисления токсинов специальными ферментами – оксидазами, а затем конъюгации (соединения) полученных метаболитов с теми или иными нейтральными веществами.
 

ПЕРВАЯ ФАЗА МЕТАБОЛИЗМА – ОКИСЛЕНИЕ

  Этот процесс происходит на главных путях поступления ксенобиотиков в организм – пищевом (печень и желудочно-кишечный тракт) и дыхательном (легкие). Здесь необходимо отметить, что окисление, восстановление и гидролиз чужеродных соединений осуществляют в основном микросомальные и пероксимальные ферменты.

Пероксисомы и микросомы — микротельца клеток, которые можно рассматривать как специализированные окислительные органеллы.  

  Это значит, что ходе этого процесса в организме человека образуется большое количество свободных радикалов, известных своими мутагенными и канцерогенными свойствами. Помимо этого, согласно современным исследованиям по гериатрии, повышенное образование свободных радикалов в организме значительно ускоряет старение его тканей.
  В клетках печени в результате микросомального и пероксимального окисления эндотоксины приобретают функциональную группу, с которой затем смогут связаться особые нейтрализующие соединения.

ВТОРАЯ ФАЗА МЕТАБОЛИЗМА – КОНЪЮГАЦИЯ

  Основная функция этой фазы это присоединение к эндотоксину обезвреживающих элементов, например серной или глюкуроновой кислоты. Такое изменение свойств исходной молекулы токсина увеличивает её гидрофильность, то есть способствует появлению вокруг ксенобиотика сольватной оболочки из поляризованных молекул воды.

Возникновение сольватной оболочки изменяет физические свойства и улучшает растворимость ксенобиотиков, что в конечном итоге способствует его быстрой экскреции (выделения) из организма.

  Функционирование второй фазы ограничивается тем, что в ней участвуют только те вещества, которые уже прошли первую фазу метаболизма ксенобиотиков. Но с другой стороны эта фаза имеет важное достоинство – ферменты ответственные за присоединение нейтрализующих молекул есть во всех клетках. Поэтому во второй фазе уже вся совокупность клеток организма борется с токсинами, что позволяет эффективно осуществлять или завершать детоксикацию. 

СВЯЗЫВАНИЕ, ТРАНСПОРТ И ВЫВЕДЕНИЕ КСЕНОБИОТИКОВ

  Система обезвреживания образовавшихся в результате гниения белков пищи токсинов включает множество разнообразных ферментов, под действием которых практически любой ксенобиотик может быть нейтрализован.

                         

Рис. 1. Метаболизм и выведение ксенобиотиков из организма.RH – ксенобиотик; ОК – группа, используемая при конъюгации ;В ходе первой фазы в структуру вещества

RH вводится полярная группа ОН-. Далее происходит реакция

конъюгации; конъюгат в зависимости от растворимости и молекулярной массы

удаляется из организма через печень, почки и железы внешней секреции.

 
  Большинство ксенобиотиков в результате метаболизма становятся более гидрофильными, поступают в плазму крови, откуда они удаляются почками с мочой. Вещества более гидрофобные или с большой молекулярной массой (>300 кД) чаще выводятся с желчью в кишечник и затем удаляются с калом.
  “Кооператив” печень – почки играет важнейшую роль в обезвреживании и выведении из организма большинства ксенобиотиков. Однако несмотря на доминирующую роль печени и почек в метаболизме ксенобиотиков, другие органы также принимают участие в этом процессе. В детоксикации организма, хоть и в меньшей степени принимают слизистые оболочки – желудочно-кишечного тракта, легких и верхних дыхательных путей. Благодаря диффузии ксенобиотики также могут выводиться с молоком кормящих матерей и секретом потовых, сальных, слюнных желез. Существует прямая корреляция между активностью гнилостных процессов в кишечнике и содержанием ксенобиотиков в крови и секрете желез(!!!)
 

Образование и обезвреживание крезола и фенола

  Под действием ферментов бактерий из аминокислоты тирозина могут образовываться фенол и крезол путём разрушения боковых цепей аминокислот микробами (рис. 2).

Рис. 2. Катаболизм тирозина под действием бактерий. E – бактериальные ферменты.

  Всосавшиеся продукты по воротной вене поступают в печень, где обезвреживание фенола и крезола может происходить путём конъюгации с сернокислотным остатком (ФАФС) или с глюкуроновой кислотой в составе УДФ-глюкуроната. Реакции конъюгации фенола и крезола с ФАФС катализирует фермент сульфотрансфераза (рис. 3).

Рис. 3. Конъюгация фенола и крезола с ФАФС. E – сульфотрансфераза.

  Конъюгация глюкуроновых кислот с фенолом и крезолом происходит при участии фермента УДФ-глюкуронилтрансферазы. Итоговые продукты конъюгации хорошо растворимы в воде и выводятся с мочой через почки. Повышение количества конъюгатов глюкуроновой кислоты с фенолом и крезолом обнаруживают в моче при увеличении продуктов гниения белков в кишечнике.
 

Образование и обезвреживание индола и скатола

  В кишечнике из аминокислоты триптофана микроорганизмы образуют индол и скатол. Бактерии разрушают боковую цепь триптофана, оставляя нетронутой кольцевую структуру. Индол образуется в результате отщепления бактериями боковой цепи, возможно, в виде серина или аланина (рис. 5).

Рис. 5. Катаболизм триптофана под действием бактерий. E – бактериальные ферменты.

  Скатол и индол обезвреживаются в печени в два этапа. Сначала в результате  микросомального окисления они приобретают гидроксильную группу. Так, индол переходит в индоксил, а затем вступает в реакцию конъюгации с ФАФС, образуя индоксилсерную кислоту, калиевая соль которой получила название животного индикана (рис. 6).

Рис. 6. Участие сульфотрансферазы в обезвреживании индола. E – сульфотрансфераза.

ПОСЛЕДСТВИЯ ГНИЕНИЯ БЕЛКА В КИШЕЧНИКЕ ЧЕЛОВЕКА

1) Закисление тканей и нарушение микроциркуляции. Вследствие того, что в организме человека все вышеперечисленные токсичные продукты гниения белка подвергаются обезвреживанию путем химического связывания с серной или глюкуроновой кислотой, в тканях тела происходит накопление кислых продуктов метаболизма.

А, как известно, при сдвигах рН в кислую сторону, происходит дегидратация соединительной ткани и переход межклеточного вещества в состояние плохо проницаемого геля.

(i)  
  В итоге у человека возникает отек и ухудшение микроциркуляции тканей, что неизбежно приводит к нарушению их нормального метаболизма и ослаблению функциональной активности.

2) Воспалительный процесс в кишечнике и печени. Как известно, в зависимости от характера предпочитаемого пищевого субстрата кишечную микрофлору человека разделяют на две основные группы:

Сахаролитическая нормофлора (расщепляет сахара) относится в преимущественно к грамположительным микроорганизмам это бифидобактерии, лактобактерии, энтерококки, клостридии и т.д.

Протеолитическая микрофлора (расщепляет белки) относится в основном к грамотрицательным микроорганизмам это кишечная палочка, бактероиды, протей, фузобактерии и т.д.

  Примечательным моментом в этом распределении кишечной микрофлоры является то, что все гнилостные микроорганизмы помимо того, что выделяют ядовитые для организма человека продукты распада аминокислот, ещё и содержат особый эндотоксин – липополисахарид. Это биологически активное вещество является компонентом наружной стенки ВСЕХ грамотрицательных бактерий.

  В организме человека эндотоксин проникает через слизистую в ткани и кровь, где распознаётся иммунными клетками (в первую очередь макрофагами) и вызывает сильный иммунный ответ. Именно поэтому бактериальный эндотоксин гнилостной микрофлоры играет ключевую роль в развитии воспалительного процесса в толстом кишечнике, печени и эндотелии кровеносных сосудов.

(i)

3) Гипераммониемия (повышение уровня аммиака в организме). В результате гниения белков в кишечнике человека образуется и всасывается в кровь аммиак.

Аммиак – токсичное соединение. Даже небольшое повышение его концентрации оказывает неблагоприятное действие на организм, и прежде всего на ЦНС.

Этот ядовитый газ легко проникает через мембраны в клетки и изменяет течение некоторых биохимических реакций в митохондриях.

Результатом воздействия аммиака на метаболизм тканей мозга является кислородное и энергетическое голодание нейронов, изменение нормального обмена аминокислот, а также подавление синтеза некоторых нейромедиаторов.(i) Поэтому активное гниение белковой пищи в кишечнике может приводить к различным неврологическим и психическим нарушениям.

4) Агрегация эритроцитов. Избыток белка в рационе, приводит к ещё одному нежелательному последствию – агрегации (склеиванию) эритроцитов в монетные столбики или в более крупные комки

  Происходит это потому что при обезвреживания эндотоксинов активированные купферовские клетки и гепатоциты являются источником свободных радикалов, которые инициируют гибель этих клеток.(i)
  В этом процессе клетки печени выделяют особые соединения – белки острой фазы воспаления.(i) Как известно именно эти вещества в плазме крови создают оптимальные условия для склеивания красных клеток крови.(i) В свою очередь появление слипшихся монетных столбиков и других агрегатов из эритроцитов вызывает закупоривание мелкие сосудов и  капилляров, что в конечном итоге нарушает нормальную микроциркуляцию крови.
  

Вывод

  Организм человека вынужден применять целый ряд защитных механизмов для обезвреживания токсичных веществ, образующихся в кишечнике из пищевых продуктов с высокой концентрацией белка. Это оказывает повышенную нагрузку на все клетки тела человека и неизбежно приводит к возникновению различных нарушений метаболизма, а также вызывает преждевременное старение организма.(i)
  Наполняя свой рацион овощами и фруктами, и ограничивая употребление высокобелковой пищи, люди естественным образом подавляют активность гнилостных микроорганизмов. Уменьшение потока ксенобиотиков и эндотоксинов на низкобелковом питании снижает нагрузку на печень, иммунную и выделительную системы. При этом в теле человека нормализуется обмен веществ, снижается риск возникновения многих заболеваний и продлевается срок жизни клеток всего организма.

  При традиционном питании взрослый человек в среднем употребляет 100–120 гр. белка в сутки.

На фрукторианстве при наличии в рационе высококалорийных фруктов или растительного масла достаточно употреблять в среднем около 3-4 кг растительной пищи в сутки, в которой общее количество белка находится в пределах 40–60 гр.

Это в ДВА-ТРИ РАЗА меньше чем белковая нагрузка всеядного рациона(!!!) Но это больше, чем установленный учёными физиологами белковый минимум для взрослого человека (70 кг), определённый на границе 37 гр. белка в сутки.(Чукичев И.П. Физиология человека. 1961)

  В наблюдениях проводившихся многие месяцы на людях, было установлено, что можно обеспечить азотистое равновесие посредством именно этого количества белка в рационе. Однако в экспериментах с животными на длительное время (более 5% от средней продолжительности жизни) при белковом минимуме были получены расстройства в ряде систем организма, падения удоев у коров, мышечная атрофия, заболевания кожи и бесплодие. Это означает, что в рационе здорового человека количество белка должно обязательно превышать значение белкового минимума. И это естественным образом получается при сбалансированном рационе состоящем из овощей и фруктов.

Литература:

С. А. КУЦЕНКО  ОСНОВЫ ТОКСИКОЛОГИИ,   Санкт-Петербург,   2002
Обезвреживание ксенобиотиков (КУЛИНСКИЙ В.И. , 1999), БИОЛОГИЯ
Биохимия: Учеб. для вузов, Под ред. Е.С. Северина., 2003.

Источник: https://artemu238.livejournal.com/23287.html

Гниение белков и аминокислот (триптофана, тирозина, лизина, орнитина) в кишечнике. Обезвреживание продуктов гниения белков в организме

Гниение аминокислот в кишечнике обезвреживание продуктов гниения

1. Известно, что микроорганизмы кишечника для своего роста также нуждаются в доставке с пищей определенных аминокислот.

Микрофлора кишечника располагает набором ферментных систем, отличных от соответствующих ферментов животных тканей и катализирующих самые разнообразные превращения пищевых аминокислот.

В кишечнике создаются оптимальные условия для образования ядовитых продуктов распада аминокислот: фенола, индола, крезола, скатола, сероводорода, метилмер-каптана, а также нетоксичных для организма соединений: спиртов, аминов, жирных кислот, кетокислот, оксикислот и др.

Все эти превращения аминокислот, вызванные деятельностью микроорганизмов кишечника, получили общее название «гниение белков в кишечнике».

Так, в процессе распада серосодержащих аминокислот (цистин, цистеин, метионин) в кишечнике образуются сероводород H2S и метил-меркаптан CH3SH.

Диаминокислоты – орнитин и лизин – подвергаются процессу декарбоксилирования с образованием аминов – путресцина и кадаверина.

Из ароматических аминокислот: фенилаланин, тирозин и триптофан – при аналогичном бактериальном декарбоксилировании образуются соответствующие амины: фенилэтиламин, параоксифенилэтиламин (или тира-мин) и индолилэтиламин (триптамин).

Кроме того, микробные ферменты кишечника вызывают постепенное разрушение боковых цепей циклических аминокислот, в частности тирозина и триптофана, с образованием ядовитых продуктов обмена – соответственно крезола и фенола, скатола и индола.

После всасывания эти продукты через воротную вену попадают в печень, где подвергаются обезвреживанию путем химического связывания с серной или глюкуроновой кислотой с образованием нетоксичных, так называемых парных, кислот (например, фенолсерная кислота или ска-токсилсерная кислота). Последние выделяются с мочой. Механизм обезвреживания этих продуктов изучен детально.

В печени содержатся специфические ферменты – арилсульфотрансфераза и УДФ-глюкоронилтран-сфераза, катализирующие соответственно перенос остатка серной кислоты из ее связанной формы – 3'-фосфоаденозин-5'-фосфосульфата (ФАФС) и остатка глюкуроновой кислоты также из ее связанной формы – уридил-дифосфоглюкуроновой кислоты (УДФГК) на любой из указанных продуктов.

Индол (как и скатол) предварительно подвергается окислению в индоксил (соответственно скатоксил), который взаимодействует непосредственно в ферментативной реакции с ФАФС или с УДФГК. Так, индол связывается в виде эфиросерной кислоты.

Калиевая соль этой кислоты получила название животного индикана, который выводится с мочой (см. главу 18). По количеству индикана в моче человека можно судить не только о скорости процесса гниения белков в кишечнике, но и о функциональном состоянии печени.

О функции печени и ее роли в обезвреживании токсичных продуктов часто также судят по скорости образования и выделения гиппуровой кислоты с мочой после приема бензойной кислоты.

Таким образом, организм человека и животных обладает рядом защитных механизмов синтеза, биологическая роль которых заключается в обезвреживании токсичных веществ, поступающих в организм извне или образующихся в кишечнике из пищевых продуктов в результате жизнедеятельности микроорганизмов.

2. Аминокислоты, которые не всосались в кровь через слизистую оболочку тонкой кишки, подвергаются воздействию микроорганизмов в толстом кишечнике. При этом ферменты микроорганизмов расщепляют аминокислоты и превращают их в амины, жирные кислоты, спирты, фенолы и другие вещества, нередко ядовитые для организма.

Этот процесс иногда называют гниением белков в кишечнике. В его основе лежит декарбоксилирование аминокислот, при этом из аминокислот образуются биологические амины. Так, из аминокислоты орнитина NH2(CH2)3CH(NH2)COOH образуется путресцин H2N(CH2)4NH2 (токсическое вещество из группы полиаминов), из лизина H2N(CH2).4CH(NH2).

COOH образуется кадаверин NH2(CH2)5NH2 (токсическое вещество из группы птомаинов).

Путресцин и кадаверин выводятся из организма с фекальными массами. В тех случаях, когда эти соединения попадают в кровь, они выводятся с мочой в неизмененном виде.

Из тирозина OHC6H4CH2CH(NH2)COOH образуется крезол СН3С6Н4ОН (производное фенола, обладающее токсическими свойствами и специфическим неприятным запахом), а если процесс идёт дальше, то и фенол С6Н5ОН (карболовая кислота – гидроксибензол, производное бензола, токсическое вещество).

Из аминокислоты триптофана C13H10O2N2 образуются скатол NC₈H₆CH₃ (бесцветное кристаллическое вещество с очень неприятным запахом) и индол C8H7N (токсическое вещество со специфическим неприятным запахом).

При глубоком разрушении кишечными микроорганизмами серосодержащих аминокислот — цистина C6H12N2S2O4, цистеина HSCH2CH (NH2) COOH и метионина CH3SCH2CH2CH (NH2) COOH — образуется сероводород (H2S, газ с резким неприятным запахом), меркаптан (CH3SH, летучее вещество с сильным удушливым запахом) и другие серосодержащие соединения.

Продукты гниения белков всасываются в венозную кровь, затем попадают в печень, где и обезвреживаются с помощью эндогенной серной кислоты или глюкуроновой кислоты. Индол и скатол также обезвреживаются в печени при участии серной и глюкуроновой кислот. Однако они предварительно окисляются: скатол в скатоксил, индол в индоксил и в виде парных кислот выводятся из организма с мочой.

Некоторые ядовитые вещества, например, бензойная кислота C6H5COOH, образующаяся из аминокислоты фенилаланина C3H5CH2CH (NH2) COOH, обезвреживаются в печени с помощью аминокислоты глицина. При этом образуется гиппуровая кислота C6H5CONH2CH2COOH — безвредное соединение, которое выводится с мочой.

Возможности печени в обезвреживании продуктов гниения белков, образованных в толстом кишечнике и всосавшихся в кровь, не безграничны.

При снижении ее функциональной способности (например, в связи с перенесенными ранее заболеваниями) поступление значительного количества ядовитых веществ может оказаться чрезмерной нагрузкой.

Тогда часть необезвреженных ядовитых веществ разносится (большим кругом кровообращения) по всему организму, вызывая его отравление. Происходит преждевременное старение клеток и их гибель. При этом отмечается ухудшение самочувствия человека, его мучают головные боли.

Для предупреждения негативного воздействия ядовитых веществ на организм необходимо рационально планировать пищевой рацион.

В него должны быть включены продукты, содержащие не только белки, но и жиры и углеводы, полезные кисломолочные продукты, так как молочнокислые бактерии способствуют ускорению гибели гнилостных микроорганизмов толстой кишки.

В рационе необходима пища, которая является источником пектиновых веществ и клетчатки, что, повышая двигательную активность кишечника, способствуют выведению шлаков (в том числе и ядовитых веществ) из организма.

Источник: https://studopedia.org/13-18479.html

ГастритаНет
Добавить комментарий